大部分塑料因自身高绝缘性,传统是被作为绝缘材料使用。随着电子工业的发展,抗静电、导电、抗电磁干扰屏蔽、电磁波吸收等技术越来越受到人们的关注,市场对塑料提出了高导电性能的要求。
导电塑料是将塑料作为基材和各种导电添加剂混合,用传统塑料的成型方法加工而成的功能型高分子材料,导电塑料实现了从绝缘体到半导体再到导体的巨大变化。与传统的金属材料相比,它具有重量轻、易成型、耐腐蚀、可回收、电阻率大范围调节等特点,并可以方便地通过配方设计复合成种类繁多,应用领域广泛的材料。导电塑料按照导电性能可分为:防静电体、导电体和高导电体;按制作方法可分为结构型导电塑料和复合型导电塑料;按用途可分为抗静电材料、导电材料和电磁波屏蔽材料。其中用途最广和使用量最大的,是以碳系导电物质为添加剂,用传统塑料的方式进行混炼加工的碳系物填充导电塑料。
可以用于导电塑料的碳系填充物,包括导电炭黑、乙炔黑、碳纳米管、石墨烯等。炉法导电炭黑和乙炔黑是最传统导电碳材料,光是中国国内每年生产量超过数万吨,生产厂家众多。炉法导电炭黑和乙炔黑为代表的炭黑导电塑料,因为价格低,用量最大。导电炭黑根据不同规格,价格在10-200元每公斤,进口普通导电炭黑在40-80元每公斤。目前我国电线电缆用导电炭黑的市场容量约为3.8万吨左右,导电涂料、电子元件、抗静电油墨、导电膜等领域导电炭黑的需求量约为2万吨左右。随着我国国民经济及各行业的不断发展,导电炭黑的应用水平不断提高,导电炭黑生产量每年都在增加。但是为了达到所需要的导电效果,通常国产导电炭黑需要填充15-30%在塑料里,进口导电炭黑需要填充10%左右在塑料里,导致塑料力学性能损失较大,而且表面容易掉炭黑颗粒。
碳纳米管和石墨烯是新一代碳系导电材料,突出优点是填充量比炭黑少,对塑料的力学性能损伤小。碳纳米管是由单层石墨片卷曲而成的无缝中空管子,管子的外径1-50纳米,长度几微米到上百微米。国产碳纳米管导电性和分散性比进口的差,导致填充量大,加工性能差,性价比低,处于价值链的低端。以使用量较大的欧洲某碳纳米管公司产品为例,使用通用的塑料加工方法和设备填充2%wt在PC塑料里,就可以达到表面电阻率104Ohm/sq,加工性能较好。其添加量,只要传统炭黑填料的1/5-1/15,性能突出。
碳纳米管应用于导电塑料存在的问题是,碳纳米管是一维材料,碳纳米管彼此之间有巨大的范德华力内聚力。通常在生产设备出来是高度团聚的纠缠状态,需要特殊技术才能分散开,获得所需的导电效果。国产低端碳纳米管通常需要添加3-8%在塑料里才能达到与国外公司相同效果,而且直接使用通用的塑料加工方法得到的国产碳纳米管导电塑料,表面不光滑,有凸点。国外公司有专利技术、专用设备、保密分散剂等对碳纳米管进行专业加工,所以国内碳纳米管导电塑料技术落后于外国。因为应用技术水平低、分散性难解决和价格等原因,在国内碳纳米管导电塑料的使用目前还较少见,还是以炭黑系的导电塑料为主。
石墨烯是顶着明星光环,闪耀登场的新一代导电碳材料。理论上石墨烯拥有奇异的物理结构,从而具有优异的力学、电学和热学特性。自2010年石墨烯的发现者获得诺贝尔奖后,石墨烯的研究与炒作在国内呈星火燎原之势,越烧越旺。此外,中国的石墨产量约占世界总产量的45%左右,我国的石墨储量、产量及出口量均居世界之首。基于简单的推理,联想到中国拥有世界最大的石墨矿产储量,以及石墨与石墨烯之间的理论关联,在国内的多个城市包括无锡、常州、青岛、西安、宁波和重庆,已经投入巨资建立了多个石墨烯产业园。不过,目前市场上还很少有石墨烯的大吨位工业应用,已经搭好的石墨烯产业园平台还得不到有效利用,已成立的石墨烯公司大部分处于亏损状态。实际上以通用石墨矿物为原料,很难大批量获得高品质、高导电性石墨烯材料,使用化学气相沉积法能获得高品质、高导电性石墨烯。
从技术上分析,通常石墨烯粉体因为是二维平面片层结构,受到外力挤压的时候,很容易片层之间二次叠合,恢复石墨的本性,从而丢失石墨烯的特性,这也导致石墨烯粉体很难和传统塑料加工兼容,不易通过双螺杆挤出机直接加工的方式,得到石墨烯填充导电塑料。笔者尝试过多家公司和多种类型石墨烯,直接和塑料一起混炼的话,通常需要3-8%填充量才能达到导电性。石墨烯价格比碳纳米管贵,填充量又比碳纳米管多,目前在导电塑料领域应用很少见。
只有具备高导电性石墨烯片层结构的纳米碳材料,才能具有理论预测的优异高导电特性,才有可能开发出巨大的下游应用市场。经过多年理论和工厂实践,通过借鉴传统碳材料――导电炭黑、碳纤维、活性炭等材料的工艺原理,赵社涛创新开发了超高导电性纳米碳材料量产工艺。通过一定工艺条件下,控制纳米碳材料生成三维石墨烯结构,即可大批量低成本制成超高导电性纳米碳材料。